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ABSTRACT 

To provide delay corrections  to  single  frequency 
users, wide area differential GPS systems depend upon 
accurate  determination of ionospheric  total  electron 
content (TEC). This paper describes a new model for 
retrieving ionospheric  calibrations from sets of GPS 
measurements. A distinctive feature of this approach is 
the simultaneous retrieval of multiple parameters  from  the 
GPS data, representing various integrated quantities in 
addition to vertical TEC.  Instead of converting each slant 
TEC measurement to a single associated vertical TEC 
value, the simplest version of this model treats each slant 
TEC measurement as a linear  combination of two- 
parameters, i.e., integrals of the electron density along 
raypaths at two or more fixed, fiducial elevation angles. A 
four-parameter version  of the model includes linear terms 
that correct for horizontal gradients along the raypath of 
each measurement. Analysis and initial retrieval results 
indicate  that  even the two-parameter  model  produces slant 
TEC calibrations that are significantly more accurate than 
those generated using other current models, especially for 
measurements at low elevation angle, where errors from 
other apprdches tend to be  largest. 

INTRODUCTION 

The Global Positioning System (GPS) can be  used to 
measure the integrated electron density along raypaths 
between satellites and receivers (Lanyi and  Roth, 1988). 
Maps  of the distribution of vertical total electron content 
(TEC) have been  generated by analyzing GPS data 
collected from global and regional networks of receivers 
(Mannucci et al., 1999). This paper describes a new 
model, or, more precisely, a new family of models, for 
obtaining slant TEC corrections for wide area differential 
GPS  systems. 

Current slant TEC models  typically associate a given 
slant  GPS  measurement  with  the vertical TEC value  at  the 
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sublatitude and sublongitude where the raypath intersects 
a reference ionospheric height (henceforth designated the 
ionospheric point). The slant-to-vertical conversion ( ie . ,  
the mapping function) is treated as a known function of 
elevation angle and other model variables. Two types of 
error restrict the accuracy of such models: (1 )  error 
associated  with the model  mapping function, and ( 2 )  error 
arising from the neglect of horizontal gradients of the 
electron density along the raypath. A mapping function 
specifies a predetermined form for the unknown height 
variation of the electron density profile. For example, the 
well-known thin-shell model relies on the rather crude 
assumption that the electron density is non-negligible 
only  in the vicinity of the ionospheric reference height. 
Neglecting horizontal density gradients causes distinct 
measurements that share a common ionospheric point to 
produce inconsistent estimates of the same vertical TEC 
value. 

The fundamental postulate of the new model is that, 
for each measurement, the horizontal variation of the 
electron density at any altitude  can  be expressed as a 
power series expansion centered about the angle formed 
by three points: the receiver, the center of the earth, and 
the ionospheric point (typically at an altitude of 450 km). 
A unique feature of this approach is the simultaneous 
retrieval of multiple parameters from the GPS data, 
representing various integrated quantities in addition to 
vertical TEC. Rather than converting each slant TEC 
measurement to a single associated vertical TEC value, 
the simplest version of the model treats each slant TEC 
measurement as a linear combination of integrals of the 
electron density along raypaths at two or more fixed, 
fiducial  elevation  angles. A four-parameter version 
includes terms  that account for electron density gradients 
along  the  raypath. 

Analysis  and initial retrieval results reveal  that  even a 
two-parameter  model (e.g., vertical TEC and slant TEC at 
an elevation angle of 20 degrees) produces  more accurate 
slant  TEC  calibrations  than  current  models.  The 
improvement is most dramatic for measurements at low 
elevation angle, where errors from other approaches tend 
to be largest. However,  the two-parameter model doubles 
the amount of ionospheric correction data that must  be 
transmitted to GPS users. Since the bandwidth  for 
transmitting corrections is limited,  it  is  important  to 
determine the extent to which the magnitude of these 
additional  corrections justifies the  increased cost. 

The paper is organized in sections as follows: (1) a 
derivation of the general formalism of the approach; ( 2 )  a 
description of how the dependence of slant  TEC on 
raypath  geometry is approximated; (3) application of the 
slant TEC  model (a) in  the  absence of horizontal  gradients 

along the raypath and (b) in the presence of linear 
horizontal gradients along the raypath; (4) a proposal for 
modeling the azimuthal dependence of observations in 
parameter estimation; (5) a discussion of the achieved 
model accuracy; (6)  a comparison of initial  retrieval 
results based upon a two-parameter model with similar 
results  obtained using a thin-shell  model;  and (7) 
concluding  remarks. 

GENERAL FORMULATION 

An individual  slant TEC measurement can  be 
modeled as an integral of the electron density over the 
raypath: 

where nC(k 8,4) is the electron density as a function of h, 
the height above the earth, 8, the geocentric  latitude 
( - a / 2  I 8  I ~ / 2 ) ,  and 4, the geocentric  longitude 
( - A  < 4 I A ) .  The limits of integration are 1, and C,, 
where the subscripts denote the receiver and the satellite, 
respectively. This expression may be transformed into an 
integral over height: 

where M(a, h) is &/dh  as a function of height h and 
elevation  angle a (see Fig. 1). 
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Figure 1.  Raypath  geometry. 



The fundamental assumption of the new slant TEC 
model is that the horizontal variation of n,(h, e,$) at any 
height along the  raypath (i.e., its dependence on I3 and 4) 
can be approximated by a power series expansion about 
the sublatitude and sublongitude of the point where the 
raypath crosses the mapping reference height hi ( i e . ,  the 
ionospheric point). It proves useful  to  consider the 
problem in two dimensions before discussing the full 
three-dimensional  problem. 

Two-dimensional  geometry 

Let us  first restrict our discussion to the plane of 
observation, and let y(a,h) be the polar angle along  the 
raypath  in  the plane of observation  (see Fig. 1). If 
refraction is neglected, the raypath and, hence, y(a,h) 
and M(a, h) may be determined from purely geometrical 
considerations: 

where Re is the earth radius (evaluated herein as 6370 
l a .  

In the plane of observation, we assume that the 
spatial  dependence of the  electron  density  is of the  form: 

Y-1 

where y i  = y(a,hi). In other words, we assume that 
eq. (5) is  valid  over the height-dependent  domain 

where Syl(a, h) 3 [ ~ ( a ,  h) - yil. Notice that Sy(a, h)  is 
small in the immediate neighborhood of hi and larger 
away from hi. Thus, hi should be chosen to be near the 
height  where ne(h, y )  varies  most  rapidly  with 

Substituting eq. (5) into  eq. (2) gives 

where each 

is a known function that depends only upon raypath 
geometry. Now approximate each Gk(a, h) by gk(a, h ) ,  a 
summation that separates the dependence on h from the 
dependence  on a: 

m=O 

The purpose of  an approximation of this form is to allow 
us to write eq. (7) in terms of integrals that do not contain 
an explicit dependence  upon  the  elevation  angle: 

t = O  m=O 

where 

Note that y appears as  an independent coordinate in 
e q .  (1 1): this integral is not over a raypath. Formally, the 
A,(ly) are distributions  to be retrieved from sets of 
observations that lie within a single plane of observation. 
In practice sets of observations rarely reside within a 
single plane of observation;  this necessitates re-examining 
the  problem  in  three-dimensions. 

Three-dimensional  geometry 

Assuming K > 1 ,  the analogue of eq. (5) in spherical 
geometry  is 

where Bi and qi are  the  geocentric  sublatitude  and 
sublongitude of the ionospheric point, respectively, and 
the spherical coordinates ( I ;  8, 4) are defined  with  respect 
to solar-magnetic coordinate axes. [The structure of the 
ionosphere is relatively stationary in the solar-magnetic 
reference frame (see Mannucci et al., 1998).] Let us 
define pi to be  the azimuthal angle of the raypath at the 
ionospheric point (measured by rotating eastward from 
due solar-magnetic north). It will prove convenient to 
rotate  the  coordinate  system,  defining new angular 
coordinates 8' e'(ei, ei, p i )  and 4' = qY(Oi, q j i ,  p i )  such 
that the plane of observation coincides with the plane 
defined by 4' = 0. In this new coordinate system, the 



representation of electron density, analogous to eq. (12), 
is 

k = l  j = l  

where, in general, akj’(h, ei, qi, p i )  Z akj(h ei, 4,) . Along 
the  raypath, $’ = 0 by design, and, hence,  eq. (13) reduces 
to 

which is equivalent to eq. (5) with w - vi = 8’. Thus, the 
results  from  the  two-dimensional  case  immediately 
become  applicable.  Equation (10) generalizes  to: 

where 

Retrieval of A,(@ 4, p )  

The distributions Ah(8,4, p )  may be retrieved from 
sets of slant TEC measurements.  Formally,  this  is 
accomplished by specifying a set of basis functions such 
that 

Substituting  this  expression into eq.  (15) gives 

k=O m=O n=O 

This equation can be used to model any observation, not 
just those in one plane of observation. The coefficients 
c,, may be retrieved using, for example, a Kalman filter. 
In practice, the right-hand side of eq. (18) is augmented 
by two  terms, representing receiver and satellite hardware 
biases, respectively, that can be retrieved simultaneously 
with  the  coefficients c,, (see  Mannucci et al., 1998). 

Prior to implementing an algorithm based  upon this 
formal solution, one needs to make two decisions in 

addition to defining a set of basis functions: one must 
decide how  many terms to retain in eq. (1  3), and one must 
decide how to define the geometric terms g k ( a ,  h ) .  We 
will first address the latter of these questions and then 
consider two cases: (1) neglecting horizontal gradients 
along the raypath and (2) assuming that these gradients 
are linear with  respect to changes  in yr. 

GEOMETRIC  APPROXIMATION 

Our approach to approximating the geometric terms 
Gk(a,h)  will be to  set gk(a, h) equal to linear 
combinations of Gk (a, h) evaluated at fiducial elevation 
angles. The  advantage of this  approach  is  that  the 
geometric  error  associated  with  modeling a given 
measurement can be made arbitrarily small by using a 
sufficient number  of  such  terms,  and  this error will  vanish 
whenever the measurement elevation angle matches one 
of the fiducial angles.  To  be  more  precise, we set 

for specific elevation angles ah, where m varies from 0 
to M - 1 .  The coefficients dh(a) are determined by 
requiring 

and 

m=O 

for M-1 fiducial values of h. Thus, as an approximation 
for Gk(a, h) ,  g k ( a ,  h) will be exact not only at all 
altitudes for measurements  at  the  fiducial  elevation 
angles, it will also be exact at the fiducial values of h for 
any  arbitrary  elevation  angle. 

When defining a two-term (M = 2) approximation for 
g ,  (a, h) , we  must specify two fiducial angles, a, and a,,, 
and one fiducial height hm. The above prescription then 
gives 

where 



In general the fiducial height hkO must not equal the 
ionospheric reference height hi, since,  for k > 0, this 
causes Go(a, hko) to vanish identically, independent of a. 
For k = 0, however, hm may be set equal to hi, since 
Go(& h) is equal to M(a, h) and is thus independent of 
hi. The analogous three-term approximation (M = 3) is 
discussed  elsewhere  (Sparks etal., 2000). 

SLANT  TEC  MODEL  NEGLECTING 
HORIZONTAL  GRADIENTS  ALONG  RAYPATH 

The simplest model for slant TEC is to assume that 
horizontal gradients of the electron density along the 
raypath may be  neglected over the domain in question (as 
defined, for by  eq. (6)). This is equivalent to setting K = 1 
in  eq.(7): 

Note that if M(a,h)  is approximated by a constant, 
namely, M(a, hskll) for some representative ionospheric 
height hskN, then  eq.  (25)  becomes 

This is equivalent to assuming n,(h, e,$) is  non-zero  only 

LU - uu Two-term model 

1 1 ,  ionospheric reference height 
0 I I I 

0 5000 loo00 15000 2oooO 
h (km) 

Figure 2. Ratio of the approximation of M(o!,h) to 
its analytic  value as a function of height for various 
elevation angles a, with the ionospheric reference 
height equal to 350 km: (a) the thin shell model 
(red lines) and (b) the 2-parameter model (green 
lines)  with fiducial angles cw, = 90" and ql = 20". 

in a small neighborhood of h,,, and is designated the 
thin-shell model for slant TEC (see Mannucci et al., 
1999). M(a,hShe,) is the thin-shell obliquity factor that 
relates the slant TEC value to the vertical TEC value. 
Formally, the  thin-shell model may be considered a 
special case of eq. (10) where K = M = db(a) = 1 and 
qoo(a) = M(a, h,hCl,). 

By plotting M(a, h,,,,,) /M(a, h) as a function of h, 
the local  geometric  error may be  represented  as a 
deviation from unity (see Fig. 2). When evaluating the 
total error in the modeled slant TEC, the geometric error 
is  weighted by the  electron  density.  Since  the 
contributions to  the  total e m r  from h > hshsll and h c Ashe/, 

are opposite in sign, a judicious choice of shell height can 
result in a small net error for a given  raypath. As will be 
seen,  however,  the  shell  height  that  achieves  this 
cancellation of error is highly sensitive to changes in the 
vertical  variation of the electron density. 

The  scheme  described in the  previous  section 
generally  provides a more  accurate  approach  for 
approximating M(a, h) .  First consider a two-term 
approximation m(a, h) go(a, h) as defined in eq. (22) 
[recall  that G,(a, h)  = M(a,  h) 3 .  Equation (15) now 
becomes 

r,, = d,(a)J' dh nF(h, ei, $ i )~ (a , ,  h) 

+dol(a)j: dh n,(h, ei, + i ) ~ ( a o l ,  h). 

h, 

h, 
(27) 

By selecting a, = 90" (so that, for all h, M(a,,h) = l), 
the first integral  corresponds  to  the  vertical  TEC 
evaluated at ( Oi, $i) .  The problem now is to retrieve two 
distributions: the distribution of vertical TEC and the 
distribution of slant  TEC evaluated at elevation angle ql. 
The latter distribution may be defined without reference 
to measurement azimuthal angles since here we are here 
assuming  that  horizontal  gradients  may be neglected. 

Figure 2 also displays the ratio of the two-parameter 
approximation of M(a,h)  to  its  analytic value as a 
function of h for various  values of a, assuming h, = 350 
km, a, = 90", and (xol = 20". The  value  chosen for h, sets 
this ratio to unity  in  the  region  where the electron density 
profile attains its maximum. Note that, for h < h,, the 
ratio is always greater than unity  when a > q1 and less 
than unity when a < ql; the opposite situation holds 
when h > h,. As aol is increased, the magnitude of the 
deviation from unity decreases for a > ql and increases 
for a < ql. We  may conclude that ql should be chosen 
no smaller than the  smallest  elevation  angle of the 
measurements  that we wish to include in the  retrieval. For 
example, if we are going to exclude all data with an 



elevation angle less than 30", choosing = 30" will 
give, for all h, a maximum  error of c 4%. 

SLANT  TEC  MODEL  RETAINING  LINEAR 
HORIZONTAL  GRADIENTS  ALONG  RAYPATH 

Let  us now consider a slant TEC model  that 
incorporates linear horizontal gradients along the raypath. 
Setting K = 2 in  eq.  (15)  we  have 

The first integral is the zeroth-order term treated in the 
previous section. The second integral is the first-order 
correction due to horizontal gradients along the raypath. 
Assuming a two-term approximation for the geometric 
term  in  each  integral  gives 

Choosing cr, and a,, both to be 90" causes M(a,, h) to 
become  unity  and Gl(al0,h)  (and, hence, the third 
integral) to vanish  identically.  Thus, t ,  reduces to 

where the final term represents a first order correction to 
eq. (27) due to horizontal gradients in the plane of 
observation. 

AZIMUTHAL  DEPENDENCE 

Parameter  estimation  requires  decomposing the 
distributionsAh(O,@, p )  in terms of a set of basis 
functions.  Using  eq. (1 l), .Eq. (30) may be written 

When the correction due to horizontal gradients (the final 
term above)  is neglected, the decomposition of the 
A,(@ 4, p )  represented  in  eq. (17) may proceed  in  terms 
of basis functions b,(e, 4) that are independent of p. The 
simplest means of incorporating the correction term into 
this  decomposition is to assume  that 

This approximation will obviously be exact at pi = 0 and 
pi = x I 2. It will also be exact at pi = a and pi = 3x I 2 by 
virtue of the fact that linearity in  the plane of observation 
ensures  that A,,(e, 4, p i )  = -All(e, 4, pi + x ) .  At 
intermediate values of pi, eq. (32) may be considered an 
interpolation.  Substituting  eq. (32) into eq. (31) gives 

In this case, there are four distributions to retrieve: the 
first two have been discussed previously, namely, the 
distribution of vertical TEC and the distribution of slant 
TEC  evaluated at  elevation  angle a,, (neglecting 
horizontal gradients); the latter two represent corrections 
to slant TEC due, respectively, to north-south and east- 
west  gradients  along  the  raypath. 

ACCURACY 

To assess the  improvement  in  accuracy over standard 
models, one can begin by examining how accurately the 
geometric factor M(a,h)  is  modeled.  Figure 2, for 
example, reveals that the new model is more accurate, 
especially at low elevation angle and at altitudes greater 
than 1000 km. Even when horizontal electron density 
gradients are ignored, adopting the new model should 
lead to significant improvement in vertical TEC map 
accuracy, principally for two  reasons: (1) the distribution 
of slant TEC measurements used to generate a TEC  map 
is typically dominated by measurements at low elevation 
angle where previous models are least  accurate;  and 
(2) the contribution of TEC above 1000 km to the total 
TEC can be non-negligible. At nighttime, over half  the 
TEC  may be contributed from altitudes greater than 1000 
k m .  By overestimating M(a,  h) at large altitudes, the  thin 
shell model (and similar models) can be expected to 
underestimate the vertical TEC. This  is a possible 
explanation for the  presence of negative  TEC  values  that 
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Figure 3. Ratio of approximate slant TEC to analytic slant TEC, using representative profiles defined by  eq.  (34), for 
thin shell model  (red  lines)  and  two-parameter  model (purple lines)  with  longitude = 0", the ionospheric reference height 
= [ 250, 350, 450,  550, 650 3 km and fiducial angles = 90" and 20': (a) latitude = 0", noon; (b) latitude = O", midnight; 
(c) latitude = 40"N,  noon; (d) latitude = 40"N,  midnight; (e) latitude = 80"N,  noon; (0 latitude = 80"N, midnight. 



are sometimes  retrieved at nighttime. 

As a first  step in determining how sensitive the 
accuracy of the modeled slant TEC is to the geometric 
error, we have  evaluated  eqs.  (1)  and  (25)  for 
representative electron density profiles, assuming local 
spherical symmetry and  various  approximations  for 
M(a,  h).  The representative profiles are defined  by  using 
the IRI95 (Bilitza, 1993) model for the lower ionosphere 
and  the Gallagher model (Gallagher et al., 1988) for the 
plasmasphere as follows: 

ZR195(h) h < lo00 
mixed(h) 1000 < h < 2000 (34) 
Gaff(h) h > 2000 

where mixed(h) I (h-1000) Galf(h) + (20004) ZRZ95(h) 
and height h is in kilometers. We have evaluated six 
profiles for June 7, 1999: longitude = 0", latitude = O", 
40"N, and 80"N at noon  and midnight. Figure 3 displays 
the ratio of the approximated slant TEC to its analytic 
value for two  models:  (1)  the  thin shell model  with a shell 
height ranging from 250 to 650 km; and (2) the two-term 
approximation given by  eq. (27) with h,, also ranging 
from  250 to 650 km, cr, = 90",  and = 20". 

Note that the results for the thin-shell model are 
much more sensitive to changes in the electron density 
profile than are the  results for the  two-term  model. A shell 
height of 550 km tends to be the best choice overall, a 
result which has been confirmed by prior experience 
producing global ionospheric maps using different shell 
heights (the current version of GIM  uses  an  extended slab 
model  that provides an approximation of M(a, h) which 
closely matches that of the thin-shell model  with a shell 
height of 550 km). Even this optimal choice of shell 
height, however, can produce errors of up  to 10% (see 
Fig.  3b). In contrast, the error for a two-term  model  with a 
shell-height of 450 km never exceeds 3%. Furthermore, 
since the  two-term  model is designed so that  the error will 
be small in  the  neighborhood of the fiducial angles (here 
90" and 20"), it can guarantee superior accuracy at low 
elevation  angle  in  the vicinity of the peak of the 
distribution of measurements. 

To evaluate the improvement in accuracy that the 
four-term model provides relative to the two-term model 
(as well as other models), one can conduct a similar study 
using a fully three-dimensional ionospheric model, i.e., to 
eliminate the assumption of local spherical symmetry 
along the raypath. By evaluating  eqs,  (1)  and (28) 
directly, we can produce maps  that  display the error as a 

function of spatial location, azimuth, and elevation. Such 
a study is beyond  the scope of this  paper. 

In principle, the formalism of the approach allows as 
many terms to be added to the slant TEC model as are 
needed to achieve a desired level of accuracy. Since each 
additional  term  requires  retrieving  an  additional 
parameter,  however, it is important to determine when the 
magnitude of additional corrections justifies the increased 
computational  cost.  Furthermore, as the information 
provided by the measurements  is  spread among an 
increasing number  of retrieved parameters, the condition 
of the inverse problem eventually deteriorates, and the 
accuracy of the  solution  declines  accordingly.  The 
optimal model  based upon this formalism remains to be 
determined. 

INITIAL  RETRIEVAL  RESULTS 

In  this  section, we compare  post-fit  residuals 
obtained by processing one-day's worth of GPS data 
(June 3, 1998) from 98 stations distributed globally. First 
the thin-shell model  was  used to fit the data, and  then  the 
same data were  processed  using the two-parameter  model 
described above. Figure 4a shows the distribution of slant 
TEC measurements at one low-latitude  site (Kajelein 
Atoll  in  the  Marshall Islands, 8.7'N)  in  TECU  units  where 
1 TECU = 10l6 electrons / mete?. Raypath geometry 
within the ionosphere ensures that the slant TEC values 
generally increase as the elevation angle decreases. Also 
displayed in Fig. 4a are the post-fit residuals for the  two- 
parameter model. Note that the residuals are a small 
fraction of the slant TEC measurements  and  that  they are 
largest at low elevation  angle. 

In  Fig.  4b  we  have  superimposed  the  post-fit 
residuals of the two-parameter model on top of the 
corresponding residuals generated using the thin-shell 
model (with shell  height = 550 km). Note  that  not  only are 
the thin-shell  residuals  larger, they also tend to  be 
asymmetric about zero. Since even the thin-shell model 
should work well for measurements at high elevation 
angle, the fact that  the high-elevation angle residuals are 
offset from zero is evidence that the global least-squares 
solution generated by the Kalman filter is getting pulled 
away from the correct answer at high-elevation angle due 
to mismodeling at low-elevation angle. The residuals 
from the two-parameter model  show  no  such asymmetry 
about zero. Results  from  another  low  elevation  site 
(Guam, 13.6"N) show similar patterns of behavior. 

Figure 4d displays typical post-fit residuals at a mid- 
latitude site (Krugersdorp, South Africa, -25.9KS). Here 
the  thin-shell  model  performs  better:  the  residuals are 



h 

9 120 
Y G Site.: KWJl f8.7" N1 
E 100 - 
CI 4 8 0 -  
a 3 6 0 -  
9 -  

p?: 4 0 -  

2 0 -  

ci 
a 

3 -20 I 
0 20 40 60 80 

Elevation  (deg) 

2 0 ,  I 

Site: GUAM (13.6' N) 
Max STEC: 106 TECU E 

2-parameter model 

-20 0 20 40 60 80 " 

Elevation  (deg) 

5 2o 
Y 

5 
e 
8 10 

'1 h n - 4 v l l  model 
2-parameer model 

(b) 

20 40 60 80 
Elevation  (deg) 

Max STEC: 60 TECU 

.* . 

2-parameter model 
Zi ' I , , , ./d)] 

-20 
0 20 40 60 80 

Elevation  (deg) 

Max STEC: 65 TECU 

' l h ~ n - ~ h e l l  tmxlel 
2-parameter model 

-20 
0 20 40 60 80 

Elevation  (deg) 

Figure 4.Scatterplots of post-fit residuals obtained by processing GPS data of June 3, 1998, from 98 stations 
distributed globally, using the thin-shell model (red) and the two-parameter model (blue): (a) measured slant TEC 
(green) and residuals at Kwajelein Atoll; (b) residuals at Kwajelein Atoll; (c) residuals at Guam; (d) residuals at 
Krugersdorp;  (e)  residuals at Fairbanks. 



smaller, and  no  asymmetry is apparent. Nevertheless, the 
residuals of the  two-parameter  model  are  still 
significantly smaller than those of the thin-shell model. 
Results for a high-latitude site (Fairbanks, 65.O"N) are 
displayed in Fig.  4e. Table 1 displays the  mean residual 
and the standard deviation of the residuals for each data 
set  displayed  in  Fig.  4. 

meanTS 

-0.3 KWJl 

0 2 P  on meanzp 

1.4  2.5  -0.002 

GUAM 

0.8 1.2 0.04 0.08 HRAO 

1.9 2.7 -0.008 -0.6 

FAIR 1.5 2.0 -0.04 0.3 

Table 1. The mean residual for the thin-shell model 
(mean,,) and  the two parameter model (mean,,) and  the 
standard deviation of the  residuals for the thin-shell  model 
( q S )  and the two parameter model ( C T ~ ~ )  for receivers at 
Kwajelein Atoll (KWJl), Guam (GUAM), Krugersdorp 
(HRAO), and Fairbanks (FAIR).  All values are in  TECU 
units. 

CONCLUSION 

Current  methods  for retrieving  line-of-sight 
ionospheric calibrations use models that map slant TEC 
measurements  directly  to  vertical  TEC  estimates. 
Approximations generally include neglecting horizontal 
gradients along the raypath and assuming a specific 
vertical electron density profile in the slant-to-vertical 
conversion. Despite the rather crude  nature of these 
approximations, the ionospheric calibrations retrieved by 
processing  GPS observations have typically  been found to 
be reasonably accurate when compared to independent 
measurements (Ho et al., 1997). 

The model discussed in  this paper assumes that, for 
each measurement, the horizontal  variation of the electron 
density at any altitude can be expressed as a power series 
expansion centered  about the angle formed by three 
points: the receiver, the center of the earth, and  the  point 
where the raypath crosses a reference height. Instead of 
converting each slant TEC measurement to a single 
associated vertical TEC value, the simplest version of the 
model treats each slant TEC measurement as a linear 

combination of integrals of the electron density along 
raypaths at two or more fixed, fiducial elevation angles. 
More complex versions of this model include terms that 
correct for electron density gradients along the raypath. 
Given the  level of success already achieved by less 
accurate models, the improvements represented by this 
approach suggest that precise ionospheric calibrations for 
Wide Area Differential GPS can be retrieved whenever 
data coverage is adequate. 
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